The graphs below show the post-IC intake air temperature for the APR intercooler and the competitor's intercooler from each dyno pull.
Manufacturing, Material and other Specifications:
The all aluminum investment cast end tanks of the APR Intercooler are cast in the USA to ensure a repeatable design, high tolerances and direct access to our casting partners should an issue ever arise. The raw end tanks are each machined in house at APR. The inlet and outlet pipes on the APR intercooler are much larger than stock and larger than our competition's.
The long and smooth neck on the inlet and outlet allow for a clean mounting surface to avoid boost leaks.
APR machines unnecessary aluminum from the side mounting points to lower the intercoolers weight as much as possible. The end tank castings were designed not only for fitment and airflow, but also weight savings. This is why the APR intercooler's end tanks are sharp and geometric compared to the rounded generic design of the competition's intercooler. The APR Intercooler is around 5 LBS lighter than the competition's.
The APR intercooler core is manufactured in the USA to APR's exact specifications. In this application a staggered and louvered fin design is the best choice, which is backed up by our internal testing of several core designs. When selecting core fin density, pressure drop must be considered. Increasing density will result in more pressure drop across the core, which means the turbo will work hard to create the same pressure in the manifold compared to a freer flowing core.
Through testing of several different densities, APR found a balance between cooling and pressure drop to achieve the best possible results. A dense core was most beneficial in this application due to the intercooler core’s dimensions as well as the end tank design. Through CFD analysis, APR’s engineers designed end tanks which promote use of the entire intercooler core, rather than the first few rows. This was further backed by the density of the core, which promotes filling of the entire end tank plenum for even charge air distribution. Intercooler width was carefully selected to maximize surface area without disrupting end tank design as a wider core design showed less even distribution of charge air across the upper portion of the intercooler.
Bookmarks